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Abstract Theoretical modeling of actinide complexes
requires access to structural parameters, information on elec-
tronic, vibration and rotation energy levels and thermody-
namics properties. This article presents a critical review of
theoretical studies of actinide chemistry in gas-phase and in
solution and a comparison with experimental data in order
to assess the applicability and accuracy by which various
electronic structure theories can predict the required quanti-
ties. The quality of the basis set, the importance of electron
correlation, the description of solute-solvent interactions is
discussed in some detail.

1 Introduction

Actinide chemistry, like most experimental sciences, rests on
a fundament of methods, data and models; it is the successful
combination of these on relevant problems that leads to chem-
ical insights. This review will focus on the use of quantum
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chemical methods to investigate the physical chemical prop-
erties of actinide complexes in gas phase and solution, in
particular their structure and thermodynamics, both essential
for the understanding of reaction mechanisms. Reactions of
two different types will be discussed; the first exemplified by
the gas phase reaction

2UO3 + UF6 → 3UO2F2, (1)

and the second by complex formation and the exchange of a
ligand between the first and second coordination spheres

[UO2(OH2)5], (H2O∗) → [UO2(O
∗H2)5], (H2O), (2)

Reaction (1) involves the breaking and formation of strong
bonds and large changes in the structure between reactants
and products; this is a much more difficult problem to treat
accurately using quantum chemical methods than that exem-
plified by reaction (2), where weak labile bonds are broken /
formed. The methods used to treat these two reaction types
are very different and we will demonstrate this by scrutiniz-
ing theoretical methods and models based on recent com-
putational work in molecular actinide chemistry. Whenever
possible, comparisons are drawn with experimental data, to
assess the accuracy of theoretical methods and discuss the
applicability of chemical models.

Quantum chemistry applied to actinides should be based
on “first principles” and the solution of the (time-independent)
Schrödinger equation. In principle, it provides information on
all chemical and physical properties of a particular compound
and of its possible reactions. Quantum chemical calculations
of actinide complexes of chemical relevance require appre-
ciable computational resources because of the large number
of valence electrons on the actinide center and the ligands
in the first coordination sphere. The practical solution of the
Schrödinger equation requires approximations that may have
a bearing on the accuracy of the predictions of geometries
and energy. The most important approximations that will be
discussed are: (a) the choice of the relativistic Hamiltonian
and the basis set, (b) the treatment of correlation effects,
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(c) spin-orbit coupling and (d) solute-solvent interactions.
It is necessary to strike a balance between the level of de-
tail in the quantum chemical method used and the accuracy
required; the more details and the higher the accuracy, the
longer the computation time and the larger the cost. The total
energy of a certain chemical species is much larger than the
energy of chemical reactions and its accuracy varies signif-
icantly with the quantum chemical methods used. The situ-
ation is different for bond distances that in general vary less
than 0.1 Å between different methods. More important than
the accuracy in predicting absolute values for bond distances
and energies is the fact that systematic errors often remain
essentially constant and therefore cancel out to a large ex-
tent, e.g. when comparing the geometry of different isomers
or when computing the energy of a chemical reaction. The lat-
ter aspect is very important when benchmarking methods and
designing the chemical models where the quantum chemical
methods will be applied.

2 Computational methods

The high nuclear charge of actinide elements makes it neces-
sary to take relativistic effects into account, in order to give
an accurate representation of their electronic structure. In
quantum chemistry, the relativistic Dirac equation is the most
exact way of including these effects. The four-component
Dirac equation is fairly complicated, but it can be brought to
a two- component form by the Douglas–Kroll–Hess transfor-
mation [1, 2]. A scalar form of the relativistic Hamiltonian,
which is only marginally more complicated than the nor-
mal non-relativistic Hamiltonian, is obtained by removing
the spin-dependence. Based on the relativistic spin-free
Hamiltonian spin-orbit effects can be calculated within the
LS coupling scheme either at the variation-perturbation level
using selected spin-free states as a basis like in the RASSI
module [3] of the Molcas program package [4], or at the spin-
orbit CI level with the EPCISO program [5]. A very efficient
method for calculating spin orbit integrals is provided by the
mean-field method [6, 7]. However, the large number of elec-
trons still makes the calculations fairly time-consuming. One
can replace the computationally demanding yet chemically
unimportant core electrons by potential functions that are de-
signed to mimic their effects on the valence electron density,
at the same time as they take their relativistic nature into ac-
count. In lighter elements, such as the transition metals or the
lanthanides, it is well known that Effective Core Potentials
(ECP) that include the outer core orbitals in the valence shell
are of essentially the same quality as their all-electron coun-
terparts. The 6s and the 6p orbitals in the early actinides are
much more flexible than their counterparts in the transition
metals or the lanthanides, in which they would be considered
as (outer) core orbitals. The semi-valence character of the 6s
and the 6p orbitals was first pointed out by Pyykkö [8], who
introduced the concept of a 6p hole, which implies that an
electron is excited into the outer valence shell and thereby
active in bond formation. This makes the choice of the core

in the ECP somewhat delicate for the early actinides. In the
energy-consistent ECPs for actinides developed by the Stutt-
gart group [9, 10] the core was chosen to comprise the 1s-4s,
2p-4p, 3d-4d and the 4f shells, leaving 32 electrons in the
valence shell for uranium. Ismail et al. [11] observed that the
ECP results did not become stable for uranyl(VI), until the
valence space was increased to include 32 electrons. Several
studies by Vallet et al. [12], García-Hernández et al. [13],
Batista et al. [14] and Straka and Kaupp [15] have shown
that small core ECPs yield accurate results for geometries
and energies; the bond distances come out slightly too long,
up to 0.02 Å in the uranyl ion [12]. However, the large core
ECPs from Hay and Martin [16–19] are less accurate, a fact
noted also by Tsushima et al. [20].

At the Density Functional Theory (DFT) level, a large
core ECP and the BP functional yields a bent uranyl(VI)
structure with a O–U–O angle of 153◦. This implies that the
large core ECPs may not be suitable for the description of
the valence shells of early actinides.

The choice of method to treat correlation is another prob-
lem, which is also connected with the semi-valence behavior
of the outer core in the early actinides. The coupled cluster
CCSD [21] and CCSD(T) [22, 23] methods are both size con-
sistent and highly accurate, but in the coupled cluster methods
only single determinant reference states can be used. How-
ever, actinide complexes with 2–12 unpaired 5 f electron are
usually multi-configurational due to atomic angular momen-
tum coupling, and must be treated with multi-reference meth-
ods. Conventional multi-reference singles and doubles CI
methods are vulnerable to size-consistency errors. The David-
son correction [24] is normally used in such calculations for
systems with more than 10 electrons; however, for systems
with more than 20 electrons the results often become unre-
liable. Somewhat larger systems can be treated using ACPF
[25], a method that is essentially an iterative Davidson proce-
dure where the number of electrons that can be correlated is
still quite limited. CASPT2 [26, 27] is applicable, but in order
to attain accurate results a large, preferably full, valence space
must be used; this is for practical purposes essentially impos-
sible even for “small” complexes such as the hydrated UO2+

2
ion with a saturated first hydration shell. A remaining possi-
bility is to use minimal CASPT2 with one or a few strongly
coupled f -configurations in the reference space; for all prac-
tical purposes this is equivalent to MP2 and will be usually
referred to as such in the following. All the approaches quoted
so far, except MP2, are expensive and thus limited to smaller
systems. The recent development of resolution of identity
techniques [28, 29], combined with the MP2 method, also
makes it possible to optimize the geometry of larger actinide
complexes at the correlated MP2 level for the same compu-
tational cost as in a HF geometry optimization. DFT based
methods, such as B3LYP [29], could also be an alternative
for some actinide systems, provided that the multi-reference
effects are similar for the systems under study. This is most
likely the case for reactions where the oxidation state of the
actinide is unchanged as in complex formation and ligand ex-
change reactions, although there are exceptions as discussed
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below. There is a possibility that the multi-reference char-
acter might be quenched in an unrestricted DFT calculation,
but this has not yet been investigated.

A third problem in quantum chemical calculations con-
cerns the basis sets where g functions can be expected to be
important both if the 5 f -shell is occupied, in particular at the
correlated level, but also for systems like U(VI) and Np(VII),
where the 5 f -shell is formally unoccupied but where the 5 f
orbitals participate actively in the bonding.

3 Solvent models

3.1 Equilibrium models

An important part of this review concerns chemical reac-
tions in solution. For a general review on the solvent models
applied in quantum chemistry cf. the Tomasi and Persico
[31], and Cramer and Truhlar [32] and references therein.
Solvation effects can be modeled by including a few hundred
discrete solvent molecules in the model or by describing the
solutes as clusters embedded in a dielectric continuum. In the
latter model the solvent is usually assumed homogeneous and
isotropic and characterized by a scalar, dielectric constant.
This model assumes a linear response of the solvent to a per-
turbing electric field. However, it was early recognized that
the quantitative applicability of this model was limited by the
specific interactions of the solute with solvent molecules in
the region close to the solute where the solvent has proper-
ties different from the bulk; the first solvation shell dominates
these effects. It is therefore important to use a complete first
coordination sphere before embedding the solute in the sol-
vent. The charges on the solute will induce opposite charges
on the wall of the solvent cavity that will act as a first approxi-
mation to the hydrogen bond interactions between solute and
solvent in real systems; hence the solvent will have some
effect on bond distances in the first coordination sphere as
discussed in Sect. 4. A better approximation of the hydro-
gen bonding in these systems is to include the solutes with
specific outer solvation shells. In these so-called hybrid quan-
tum mechanical/ molecular mechanical (QM/MM) methods
[33–36], the metal ion with one or two hydration shells is
treated at the QM level and the outer-spheres at the MM
level. In addition, long-range interactions can be taken into
account by a dielectric continuum model. It is difficult to treat
a large number of solvent molecules quantum mechanically
at the same level as the solute, in part because of the many
possible locations and conformations of the explicit solvent
molecules. It should also be emphasized that it is important
to account for the electronic response in the MM region for
charged systems. There are so far only few studies of solvated
actinide with QM/MM methods [37]. However, calculations
with “micro” solvated clusters (few water molecules) with a
surrounding continuum often provide good approximations
of solvation.

Another approach to the solvent problem is to use a sta-
tistical ensemble for the solvent. The models include a large

number of solvent molecules and the solute-solvent system
is represented by an ensemble of structural snapshots that
fluctuate with time rather than by a single static geometry
configuration. The exploration of this ensemble of configu-
rations can be carried out in a time-independent stochastic
approach (Monte Carlo) or using the deterministic molec-
ular dynamics methods (MD). MD simulations on Th(IV)
hydrates in aqueous solutions have been done by Yang et al.
[38, 39].

A key point both in dynamics models and in QM/MM
methods is the selection of reasonable interaction potentials
with proper inclusion of N-body interaction among the parti-
cles of the sample [40]. It is often difficult to adjust the param-
eters describing the potential fields using empirical functions.
An alternative is provided by ab initio molecular dynamics
methods such as the Car–Parinello method [41] or QM/MM
Born–Oppenheimer molecular dynamics [42]. Both use po-
tential fields computed “on the fly”, using DFT; this can also
be done within a QM/MM scheme. However, these latter
methods have not so far been extended to solvated actinide
ions.

In the continuum models, the cavity in which the solute is
immersed can be either spherical or tailored to the molecular
shape. Tomasi and Persico [31] have shown that spherical
cavities are well adapted for highly symmetrical molecules
but inadequate for solutes with irregular shapes for which
shape-adapted cavities are preferable. An example is given
by Vallet et al. [43] who compared how the relative stability
of two isomers of uranyl(VI) tetra fluoride complexes var-
ied with the solvent model. One isomer was penta-coordi-
nated with a water molecule in the first coordination sphere,
[UO2F4(OH2)

2−], the other tetra-coordinated with the water
molecule in the second sphere, [UO2F2−

4 ], (H2O). The shape
of the latter complex requires a spherical cavity that is so large
that the solvent effect becomes poorly described. The use
of shape-adapted cavities corrects these artifacts as shown
in Ref. [43]. A comparison of the shape adapted contin-
uum model with a more detailed solvation model in which
part of the outer solvation sphere was described explicitly
quantum mechanically or using the hybrid QM/MM method,
shows that both models correctly identifies [UO2F4(OH2)]2−
as the stable isomer. Vallet et al. used the Conductor-like
Polarizable Continuum Model (CPCM) model and found the
same energy difference, 10 kJ/mol, between the isomers in
models with four water in the second sphere and the model
that only include the first coordination sphere. Infante and
Visscher [37] did not use a CPCM model and instead calcu-
lated the energy difference between isomers using up to thirty
specific water molecules to describe the solvent. The energy
difference between the isomers in the QM/MM model was
93 kJ/mol and in a complete QM model 59.5 kJ/mol.

3.2 Non-equilibrium solvation effects

The time scale for many chemical reactions are of the same
order or slower than the time needed for the solvent to
reorganize; hence the solvent can instantaneously follow the
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changes of the solute charge distribution and maintain the
equilibrium. However, this is not the case in reactions that
involve a rapid change in the solute charge distribution and
this gives rise to a solvent-solute system that is not in equilib-
rium; a proper solvent model must be adapted to take this into
account. The Marcus model for outer-sphere electron-trans-
fer reactions, where the solvent effect is estimated from the
Marcus formula (3) includes non-equilibrium solvent effects
by construction.

λsol =
(

1

2a1
+ 1

2a2
− 1

R12

)(
1

ε∞
− 1

ε0

)
, (3)

In Eq. (3) a1 and a2 are the radii of the cavities around
the metal centers including their first hydration shells, R12 is
the distance between them and ε0 and ε∞ are the static and
dynamic dielectric constants of the solvent. In the Marcus
model it is implicitly assumed that the complexes are fairly
far apart, and the equation is therefore applicable only for
outer-sphere reactions. For the inner sphere electron transfer
a non-equilibrium PCM model [44] must be used, because
the equilibrium model will decrease instead of increase the
activation barrier. Macak et al. [45] found that the non-equi-
librium PCM effect on the electron transfer barrier for inner-
sphere electron transfer reactions [reactions (4), (5) and (6)]

NpO(V)
2 (OH)2NpO(VI)

2 � NpO(VI)
2 (OH)2NpO(V)

2 , (4)

NpO(V)
2 F2NpO(VI)

2 � NpO(VI)
2 F2NpO(V)

2 , (5)

NpO(V)
2 (CO3)NpO(VI)

2 � NpO(VI)
2 (CO3)NpO(V)

2 , (6)

was small, between 1.5 and 8 kJ/mol [45]. They also showed
that simplified models of the binary complexes with only one
or two ligands in the first hydration sphere perform very sim-
ilarly to the models with a complete first coordination sphere.
The difference between models with only double hydroxide
or double fluoride bridges in the first coordination sphere and
those with six additional water ligands was only 1–3 kJ/mol.

For the outer sphere electron transfer the charge is trans-
ferred over considerable distance, which results in larger
changes of dipole moment of the system and therefore also in
larger changes of the solvent polarization. The solvent effect
on the activation barrier is therefore expected to be larger,
as can also be seen from the distance dependence of the sol-
vent contribution to the reorganization energy in Eq. (3). The
Marcus equation (3) gives a contribution of about 20 kJ/mol
to the barrier for the outer sphere electron self exchange in
uranyl and neptunyl solutions. However, if the non-equilib-
rium model is used on the separate complexes with filled
first hydration spheres, the calculated solvent effect is more
than twice as large. The large overestimate of the solvent ef-
fect on the outer sphere electron transfer barrier by the non-
equilibrium PCM is most likely caused by the large unbal-
anced changes in the solvent polarization due to the change
of charge state on the separate V and VI complexes.

3.3 Solvation energies in chemical reactions

The solvation energy, as determined by the difference in abso-
lute energy in gas phase and solvent, is much larger than the
corresponding reaction energies and the calculation of the lat-
ter only makes sense if the systematic error resulting from the
simplified solution model is similar for reactants and products
and therefore compensate one another in the reaction energy.
The following example shows how different chemical mod-
els and calibration procedures can be used to investigate if
this is the case, or not:

Zn(OH2)
2+
6 + NH3 → Zn(NH3)(OH2)

2+
5 + H2O, (7)

The Gibbs energy of reaction calculated from the total
energy for each reactant and product requires accurate val-
ues of their solvation energy and there is no reason to assume
that the systematic model errors will cancel since the reac-
tants and products are very different. The parameters in the
PCM model should therefore be adjusted so that the calcu-
lated solvation energy agrees with experimental values. How-
ever, these are not very precise, if they are available at all,
and the resulting error in the PCM solvation energy may be
therefore be substantial. Another possibility to take the sol-
vation contribution to the reaction energy into account is to
divide the chemical reaction studied into two steps as shown
in Eqs. (8) and (9)

Zn(OH2)
2+
6 + NH3 → [Zn(OH2)

2+
6 ], (NH3), (8)

[Zn(OH2)
2+
6 ], (NH3) → [Zn(NH3)(OH2)

2+
5 ], (H2O). (9)

Reaction (8) describes the formation of an outer-sphere
complex where the entering ligand is located in the second
coordination sphere; the Gibbs energy of reaction for this
step is small, a few kJ/mol, and can be estimated using the
Fuoss equation [46, 47] to calculate the equilibrium constant
for the formation of the outer-sphere complex. The Fuoss
equation is based on an electrostatic model where the reac-
tants are considered as hard spheres immersed in a dielectric
continuum.

The next step, reaction (9), is then described using quan-
tum chemical methods. As this is an intra-molecular reaction,
the charge is the same for the reactant and the product; in addi-
tion both have almost the same volumes. Hence we can expect
a substantial cancellation of errors in the solvation energy,
as also confirmed by comparison with experimental data; the
Gibbs energy of reaction for the “direct” calculation in Eq. (7)
and using the two-step reaction are −41 and −16.6 kJ/mol, as
compared to the experimental value −13.1 kJ/mol. The good
agreement is certainly a coincidence but the example dem-
onstrates an important principle (additional details are given
by Vallet et al. [48]). Solvent effect on the geometry and rel-
ative stability of isomers will be discussed in the following
section.
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4 Calculation of structure parameters

4.1 Effect of basis set and correlation

Table 1 compares the geometry of the bare uranyl(VI) ion
optimized at different computational levels. The small core
ECP behaves well for geometries and in general results in
slightly shorter (less than 0.01 Å) bond distances than in the
corresponding all-electron calculations at all levels which
shows that small core ECPs are reliable for the actinides.
A particular problem for the actinides is that geometries
optimized at the Hartree-Fock (HF) level underestimate the
M–Oyl bond distances in actinyl complexes as compared to
methods that include correlation. In the bare UO2+

2 ion the
HF values for the U–O bond distance is 1.64 Å as compared to
1.70 Å at the CCSD(T) level. At the MP2 level the bond dis-
tance is 0.03 Å longer than those at the CCSD(T) level. The
MP2 error is significant but not serious, since the difference
is within the experimental error limits. Since the bond dis-
tances are underestimated at the HF level but overestimated
at the MP2 level this could cause a problem in energy calcu-
lations. However, this error normally cancels, for example in
ligand exchange reactions, nevertheless it is recommendable
to optimize geometries and calculate energies at the same
level as discussed in the section Energetics and Thermody-
namics. The DFT/B3LYP U–O distance is 1.69 Å, thus close
to the highly accurate CCSD(T) geometry.

For lighter elements, a lengthening of about 0.05 Å of
a bond due to correlation would be a clear indication of
near-degeneracy effects (a large static correlation contribu-
tion, also referred to as non-dynamical correlation, caused
by the appearance of two or more nearly degenerate states,
as in H2 at large nuclear separation). Such effects are nor-
mally manifested in strong interactions between bonding and
unoccupied anti-bonding orbitals. The question then arises
whether the effect on the internal uranyl bond distance re-
flects a substantial static correlation of this type, or not. In
their study Vallet et al. [12] found no indications of strong
local correlation effects of this type in the analysis of the
correlated wave function. A CASPT2 calculation on uranyl,
with all bonding and antibonding electrons and orbitals in the
active space (12 electrons in 12 orbitals) gave a wave function
with coefficient 0.935 on the reference but no other dominant
configuration. The conclusion is that although valence cor-
relation is important, “traditional” static correlation caused
by near degeneracies between bonding and antibonding orbi-

Table 1 Bond distances in Å in the bare uranyl(VI) ion using different
approximation levels [12]

Level g functions All-electron RECP

HF No 1.6518 1.6470
HF Yes 1.6481 1.6432
ACPF No 1.7162 1.7096
ACPF Yes 1.7116 1.7080
MP2 Yes 1.7276 1.7316
CCSD(T) Yes 1.7059 1.7007
B3LYP Yes – 1.692

tals, is not dominating. Additional statements on static cor-
relation in the uranyl ion are given by Craw et al. [49]. A
second question is whether the HF geometry optimization of
actinyl(VI) complexes results in reliable structures and bond
distances for the non-“yl” bonds, or not. We will begin with
a discussion of the gas-phase geometries for the molecules
MO2F2, MO2(OH)2, MO3 and MF6, where M = U, Np or
Pu and then continue with a comparison of gas-phase and in-
solution geometries for different uranyl(VI) complexes. In
Table 2, we have compared the geometry of the molecules
MO2F2, MO2(OH)2, MO3 and MF6, where M = U, Np or
Pu and note that there is an increase of the U–Oyl distance
by 0.06 Å in UO2F2, between the HF and B3LYP optimized
geometries, as compared to 0.02 Å for the U–F distance. In
UO3 there is a significant difference between the HF and
B3LYP geometries, the former has two distinctly different
U–O distances, 1.745 and 1.828 Å, respectively, in the lat-
ter these distances are nearly the same, 1.81 and 1.85 Å ;
this is due to electron delocalization in this compound at the
B3LYP level. For UF6 the difference in the U–F bond dis-
tance between HF and B3LYP is fairly small, 0.025 Å, with
the experimental value in between.

The bond distances in the MF6 for the series U–Pu is
in good agreement with the experimental data. In UF6 the
B3LYP distance is 0.009 Å larger than the experimental value
and the HF value 0.016 Å shorter, in both cases using a small
core ECP. Privalov et al. [50] and Schimmelpfennig et al.
[51] have compared the computed harmonic frequencies for
MF6 at the HF level using a small core ECP [9, 10] with HF
and B3LYP data from Hay and Martin [19] that used a large
core ECP. For the three first bending modes (T2u) for U and
Np, both the large- and small-core results are in good agree-
ment with one another and with the experimental data (the
average deviation is 6 cm−1 ). The frequencies reported by
Schimmelpfennig et al. [51] for Pu are of the same quality,
with the exception of the Eg stretch mode, which is 100 cm−1

too low. The small core frequencies reported by Hay et al.
were for technical reasons calculated for another state. Cor-
relation is important for the higher frequencies for which the
B3LYP data are in much better agreement with the experi-
mental observations. The average errors increase to 30 cm−1

in PuF6, presumably because DFT is not suited for describing
its electronic ground state with two open f -shells. Inclusion
of spin-orbit effect might also be necessary to improve the
accuracy. The fact that the low frequency modes do not seem
to be strongly dependent on correlation implies that this is
also the case for gas phase entropies and heat capacities. It can
be noted that if the computed HF frequencies are scaled with
the empirical factor 0.9, the overall agreement with experi-
ment is significantly improved (with the exception of the Eg
mode in PuF6).

4.2 Effects of the solvent in uranyl(VI) complexes

We will now discuss the calculated geometries of differ-
ent uranyl(VI) complexes. Tables 3, 4 give a comparison of
bond distances calculated using gas-phase (GP) HF and MP2
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Table 2 Gas phase geometries for MO2F2, MO2(OH)2, MO3 and MF6 optimized at the HF or B3LYP levels, using either small core (SC) [9,
10] or large core (LC) [19] RECPs

Compound Distances (HF) ECP Ref. Distances (HF) ECP Ref.

UO2F2 U–O 1.712 SC [50] U–O 1.772 SC [50]
U–F 2.094 U–F 2.072

NpO2F2 Np–O 1.672 SC [51]
Np–F 2.085

PuO2F2 Pu–O 1.666 SC [51]
Pu–F 2.076

UO2(OH)2 U–Oyl 1.72 SC [50]
U–O 2.13

NpO2(OH)2 Np–Oyl 1.687 SC [51]
Np–O 2.111

PuO2(OH)2 Pu–Oyl 1.673 SC [51]
Pu–O 2.118

UO3 U–Oyl 1.745 SC [50] U–O1,2 1.81 SC [52]
U–O 1.828 U–O 1.853

NpO3 Np–Oyl 1.710 SC [51]
Np–O 1.796

PuO3 Pu–Oyl 1.693 SC [51]
Pu–O 1.808

UF6 U–F 1.985 LC [19] U–F 2.014 LC [19]
U–F 1.987 LC [14] U–F 2.025 LC [14]
U–F 1.985 SC [14] U–F 2.011 SC [14]
U–F 1.982 SC [50]
U–F 1.996 Exp. [53]

NpF6 Np–F 1.972 LC [19] Np–F 2.013 LC [19]
Np–F 1.950 SC [51] Np–F 1.991 SC [54]
Np–F 1.981 Exp. [53]

PuF6 Pu–F 1.943 LC [19] Pu-F 1.985 LC [19]
Pu–F 1.934 SC [51] Pu–F 1.973 SC [54]
Pu–F 1.971 Exp. [53]

The distances are in Å

Table 3 Geometries of different isomers of UO2+
2 (aq) optimized at the HF or MP2 level, in gas phase (GP) or in a CPCM solvent with various

basis sets on O and H atoms

Complex Basis setsa Methodb d(U–Oyl) d(U–O) d(U–O2) Ref.

EXAFS 1.78 2.41 – [59]
[UO2(H2O)5]2+, (H2O) ECP2MWB/huzi HF-GP 1.690 2.52(1) 4.38 [60]

ECP2MWB/huzi HF-CPCM 1.701 2.47(1) 4.31 [60]
ECP2MWB/huzi MP2-GP 1.779 2.48(1) 4.29 This work
TZVP/TZVP MP2-GP 1.776 2.47(1) 4.18 This work

[UO2(H2O)4]2+, (H2O)2 ECP2MWB/huzi HF-GP 1.688 2.47 3.94 [60]
ECP2MWB/huzi HF-CPCM 1.700 2.45(1) 4.03 [60]
ECP2MWB/huzi MP2-GP 1.777 2.42 3.85 This work
TZVP/TZVP MP2-GP 1.774 2.41 3.87 This work

[UO2(H2O)6]2+ ECP2MWB/huzi HF-CPCM 1.702 2.48× 2, 2.51× 2, 2.65× 2 – [60]
ECP2MWB/huzi MP2-GP 1.782 2.48× 2, 2.49× 2, 2.69× 2 – This work
TZVP/TZVP MP2/GP 1.785 2.47× 2, 2.49× 2, 2.64× 2 – This work

Bond distances are in Å. The geometry optimizations have in general been made without symmetry restrictions and the computed bond
average distances are given for brevity when the differences are less than 0.02 Å. In other cases the different bond distances are reported
a O basis / H basis. Oxygen ECP2MWB and TZVP basis sets are taken from Refs [55] and [56], respectively. Hydrogen Huzi (Huzinaga) and
TZVP basis sets are taken from Refs [57] and [58], respectively
b Computational level for the geometry optimization

optimization and HF optimization in a CPCM solvent model.
In some cases two different basis sets for O, the ECP2MWB
basis set from Bergner et al. [55] and the TZVP basis of
Schäfer et al. [56]; for H the Huzinaga basis set [57] and also
the TZVP basis set [58] were used. The tables include exper-
imental bond distances obtained from EXAFS in solution.

The data show that the bond distances do not vary sig-
nificantly between the two different basis sets tested for O

and H. The U–Oylbond distance at the HF level in gas phase
is about 0.07 Å shorter than the corresponding distance at
the MP2 level. The bond distances in the equatorial plane of
the first coordination sphere of the linear uranyl(VI) ion also
varies slightly depending on the approximation used but the
difference is less than 0.05 Å between HF-GP, MP2-GP and
HF-CPCM and this difference does not seem to depend on
the coordinated ligand. The distance between uranium and
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Table 4 Geometries of different uranyl(VI), uranyl(V) and neptunyl(VI) complexes optimized at the HF or MP2 level in GP or in a CPCM solvent,
with various basis sets on O and H atoms

Complex Methoda d(U–Oyl) d(U–L1) d(U–L2) Ref.
b [UO2(oxalate)2(OH2)]2− EXAFS 1.78 2.38c 2.38c [63]
L1 coord. Oox;L2 coord. H2O HF-GP 1.73 2.39(7) 2.61 [63]

Average distance U–L1 and U–L2 2.43 Å

HF-CPCM 1.73 2.40(2) 2.54 [63]
MP2-GP 1.81 2.34(4) 2.59 This work

d [UO2(oxalate)2F]3− EXAFS 1.79 2.39 2.22 [63]
L1 coord. Oox; L2 coord. F− HF-GP 1.74 2.48 2.21 [63]

HF-CPCM 1.74 2.432(8) 2.22 [63]
MP2-GP 1.83 2.432(4) This work

e [UO2(oxalate)3]4− EXAFS 1.79 2.43, 2.39 – [63]
L1 coord. Oox HF-GP 1.73 2.48(2), 2.405 – [63]

HF-CPCM 1.73 2.427(6), 2.386 – [63]
MP2-GP 1.82 2.44(1), 2.355 – This work

f [UO2F4(OH2)]2− EXAFS 1.80 2.26 2.48 [43]
L1 coord. F− ; L2 coord. H2O HF-GP 1.740 2.28(4) 2.748 [43]

HF-CPCM 1.751 2.26(1) 2.62 [43]
MP2-GP 1.84 2.27(4) 2.62 This work

g [UO2(OH)4]2− EXAFS 1.83(0) 2.26(6) – [43]
L1 coord. OH− HF-GP 1.763 2.336 – [43]

HF-CPCM 1.768 2.299(1) – [43]
MP2-GP 1.87 2.299 – This work

UO2(CO3)
4−
3 EXAFS 1.80 2.43 [64]

MPT2-GP 1.894 2.426 [61]
MPT2-SCRF 1.881 2.407 [61]
CASPT2h-SCRF 1.85 [61]
HF-GP 1.75 2.55 [65]

UO2(CO3)
5−
3 EXAFS 1.90 2.50 [64]

MPT2-SCRF 1.933 2.529 [61]
CASPT2h-SCRF 1.93 [61]

NpO2(CO3)
5−i
3 EXAFS 1.86 2.53 [66]

MPT2-SCRF 1.886 2.628 [62]
CASPT20-SCRF 1.88 2.60 [62]

Bond distances are in Å. The geometry optimizations have in general been made without symmetry restrictions and the computed bond average
distances and the maximum deviation from this are given for brevity. SCRF stands for Self Consistent Reaction Field Hamiltonian with spherical
cavity to account for solvent effects, see Refs. [61, 62]
a Computational level for the geometry optimization
b Isomer 1 of Ref. [63]
c Denotes the average value between four U–Oox and one U–OH2 distance; the experimental data are not accurate enough to separate the two
d Isomer 1 of Ref. [63]
e Structure 1 of Ref. [63]
f Structure 1 of Ref. [43]
g Structure 5b of Ref. [43]
h Active space: 12 electrons in 12 orbitals for U; 10 electrons in 12 orbitals for Np
i Geometry optimised with three Na+ counterions

water in the second coordination sphere varies slightly more
with the model used, as seen in Table 3.

When comparing computed bond distances with exper-
imental EXAFS data it is also necessary to take the accu-
racy of the latter into account. The analysis of EXAFS data
is often straightforward and results in estimated uncertainty
of bond distances of 0.01–0.02 Å. Gagliardi et al. [61] have
optimized the structures of tricarbonato complexes of uranyl
in the formal oxidation state VI and V and neptunyl(V) at
the second-order perturbation theory level MP2 and minimal
CASPT2. The computed bond distances, in particular the
equatorial bond distances agree very well with experimen-
tal data [64]. The bond distances obtained for uranyl(VI) at

the minimal CASPT2 level with two electrons in seven orbi-
tals and in a CASPT2 calculation with 12 electrons in 12
orbitals are 1.88 and 1.85 Å respectively (Table 4), in agree-
ment with the results for the bare uranyl(VI) ion (Table 1).
However, for uranyl(V) the minimal-CASPT2 and the CAS-
PT2 results are virtually the same. HF data by Pyykkö et
al. [65] for the U(VI)-carbonate deviate by 0.12 Å from EX-
AFS data. One reason might be that Pyykkö et al. [53] used a
large core ECP [16]. Gagliardi and Roos [61] have made a de-
tailed computational study of the structures of NpO2(CO3)

−,
NpO2(CO3)

3−
2 and NpO2(CO3)

5−
3 and compared the results

with experimental EXAFS data from Clark et al. [66]. The
agreement is in general satisfactory. However, Gagliardi and
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Fig. 1 Perspective views of the structures of the complexes a [UO2(oxalate-uni)(H2O)4] that shows proton abstraction and
b [UO2(oxalate-uni)(H2O)4],( H2O), in which a water molecule has been included in the second-sphere. Geometries have been optimized
at the HF level in gas-phase. The dashed line indicates hydrogen bond interactions. Bond distances are in Å

Roos [61] noticed that NpO2(CO3)
5−
3 is not a stable species

unless Na+ counter ions are explicitly included, as compared
to the corresponding uranyl(V) species. This may be due to
problems arising in connection with the solvent model when
there is more than one open f-shell on the actinide. Tsushima
et al. [20] have compared the structures of UO2(OH2)

2+
5

and UO2(CO3)
4−
3 optimized at different theory levels (HF,

B3LYP, MP2) using a large core ECP; they have also tested
different basis sets on H and O. They find that the bond dis-
tances in the equatorial plane differ less than 0.05 Å between
different theoretical models. However, their data for the tris-
carbonato complex differs significantly from that of Gagliardi
et al. [61] and EXAFS data. Tsushima et al. suggest that this
is the result of the use of a large core ECP.

The analysis of the EXAFS data for the complexes [UO2
(oxalate)2(OH2)]2− and [UO2(oxalate)3]4− is not straight-
forward and one can only determine an average U–O distance
in the first coordination sphere. The best agreement between
experimental and calculated bond distances, in general 0.05 Å
or better, is obtained with the MP2-GP and HF-CPCM mod-
els. In [UO2(oxalate)2(OH2)]2− there is no experimental
value for the U–water distance, only an average value, 2.38 Å,
for all U–O distances; also this is in good agreement with the
calculated average values at the HF-CPCM level or MP2-
GP levels, 2.43 and 2.39 Å, respectively. The only exam-
ple where there is a larger deviation between the computed
and experimental bond distances is the U–OH2 distance in
UO2F4(OH2)

2− .
New codes that allow rapid geometry optimization at the

MP2 level in gas-phase are now available and these give
geometries that are close to the experimental values. The sys-
tematic error introduced in the U–Oyl distance at the HF-GP
level does not result in errors in the equatorial bond distances
as long as these do not involve delocalization of electrons be-
tween the metal ion and ligand as is the case in molecules
like UO3.

Other types of modeling errors can appear in gas phase
geometry optimization at the HF level such as abstraction of
a proton from coordinated water to another ligand in the first
coordination sphere; this was encountered in [UO2(oxalate
-uni)(H2O)4], cf. Fig. 1a. This error can be avoided by adding

a second coordination sphere of water that can form hydro-
gen bonds to the ligand in the first sphere, see structure of
[UO2(oxalate-uni)(H2O)4] in Fig. 1b.

A second type of model error has been observed when
studying geometry optimization of UO2(OH2)

2+
6 . This ion

turned out to be unstable in gas phase geometry optimization
at the HF level, but was stable when the optimization was
made at the MP2 level or at the HF level in the CPCM sol-
vent. The stability seems to be very sensitive both to the level
of correlation and to the basis set, as discussed by Hay et
al. [67]. It is important to test the stability of structures at
different levels of approximation.

The effect of the geometry differences on reaction ener-
gies will be discussed in Sect. 5.

Conclusions Geometry optimization at the HF level in gas
phase results in reasonable bond distances, except for cova-
lent bonds such as the uranyl bonds. The equatorial bonds in
actinyl(VI) and (V) complexes with a large ionic character are
in much better agreement with experiments. Geometry opti-
mization at the HF level in the solvent does not change the
equatorial bond distances significantly for charged ligands;
however the U–OH2 distance may decrease by up to 0.12 Å,
presumably as a result of hydrogen bonding. Martínez et al.
[68] have discussed the influence of solute–solvent interac-
tions on metal–ligand bond distances. In an earlier article
[69], they pointed out that while short range specific inter-
actions, mainly hydrogen bonding, shorten the metal-water
bond distance, long-range interactions lengthen it, leading
to a mutual partial cancellation of the effects when the two
types of interactions are jointly considered. Geometry opti-
mization at the MP2-GP level provides as expected a much
better description of the covalent bonds, but bond distances
for the equatorial ligands deviate at most 0.05 Å from the val-
ues obtained at the HF level (with the exception noted above).

4.3 The effect of spin-orbit coupling on geometries

Van Lenthe et al. [70] have studied the effect of spin-orbit on
the ground state properties (bond distances and frequencies)
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in a series of closed-shell diatomic molecules. In these sys-
tems, the spin orbit effect on the bond distance never exceeds
0.03 Å, and the effect on frequencies is less than 10%. The
effect is strongest in molecules where the spin-orbit split orbi-
tals participate actively in the bonding, like the 6p of Bismuth
in Bi2; this is not the case in the early actinides where the
singly occupied 5f orbitals are localized on the actinide cen-
ter and are non-bonding due to symmetry. García–Hernán-
dez et al. [13] have compared all-electron calculations with
and without inclusion of spin-orbit coupling for various den-
sity functionals for closed-shell uranyl and UF6, and open-
shell neptunyl and NpF6. The influence of spin-orbit coupling
on geometries and vibrational frequencies is small, 0.003 Å,
and 3–8 cm−1, respectively. This indicates that in closed-
shell actinide systems high-order spin-orbit effects can be
neglected. For open-shell early actinides, spin-orbit does not
influence the geometries and frequencies but should be taken
into account in energy calculations as will be discussed in
Sect. 5.2. This also applies to the geometry of the first ex-
cited states of the early actinide ions, which correspond either
to f-f excitations, or charge-transfer excitations from bond-
ing orbitals on the actinide center to non-bonding f orbitals
( fϕ fδ orbitals). Charge-transfer states have often longer axial
An–L distances than pure f states, but bond distances agree
to 0.01 Å within each category of states, and are unaffected
by spin-orbit coupling. Examples can be found in the stud-
ies of electronic spectra of neptunyl(VI) and (V) by Matiska
and Pitzer [74], plutonyl(VI) and PuN2 by Clavaguéra et al.
[72] and UCO by Roos et al. [73]. However, with increasing
number of unpaired 5f electrons, intra-shell spin-orbit cou-
pling mixes spin-free configurations and has to be taken into
account to determine the exact nature of the ground state.

5 Energetics

In this section we will discuss the effect of correlation, basis
set and solvent on the total energy of actinide complexes and
the energy of complex formation reactions.

5.1 Effect of correlation and basis set

Several of these problems have been discussed by Vallet et
al. [12] using the following reactions:

UO2+
2 + 1/2H2O → HOUO2+ + 1/4O2, (10)

HOUO2+ + 1/2H2O → U(OH)2+
2 + 1/4O2, (11)

UO2+
2 + H2O → U(OH)2+

2 + 1/2O2. (12)

Reactions (10) and (11) describe the stepwise reduction of
U(VI) via U(V) to U(IV) by water and their sum reaction
(12). It is well known experimentally that uranyl(VI) cannot
be reduced by water, but the reaction can be used in a ther-
modynamic cycle in order to shed light on methodological
problems; Vallet et al. [74] have used this approach and shown

that good estimates of the redox potentials were obtained by
studying the same sequence of reactions for Np, Pu and Am,
using the U system for calibration.

Vallet et al. used the small core ECP suggested by the
Stuttgart group, and investigated its accuracy, the importance
of g functions in the uranium basis set and the accuracy of
different correlation methods.

There is a mistake in the article by Vallet et al. [12] in
the calculated energies at the HF level (the correlated results
and the calculated redox potentials are correct, however). In
Table 5 we present the reaction energies obtained by Vallet
et al. [12] together with new HF values calculated by us. The
error in the ECP compared to the all-electron results is at
most 5 kJ/mol. The effect of the g functions on uranium at
the HF level is surprisingly large, in particular for the second
reaction. This result shows that the g functions can be impor-
tant for complexes with occupied 5f-orbitals even at the HF
level. In a test calculation on reduction of uranyl [12], the
large core ECP from Hay and Martin [19] gave a reaction
energy that was about 20 kJ/mol more endothermic than that
obtained with the small core ECPs (35 vs. 16 kJ/mol).

It is generally assumed that high angular momentum func-
tions are more important at the correlated level than at the
HF level. As demonstrated by Vallet et al. [12] this is not
necessarily true for actinide complexes, where the largest
effect of the g functions occurs at the HF level. It should be
emphasized that the reactions studied by Vallet et al. are quite
complicated, involving both an electron transfer reaction and
the breaking of a triple bond in the uranyl unit. The results
may therefore be atypical. It is noteworthy that DFT results
obtained with either hybrid (B3LYP) or pure LDA (VWN,
BP) [75] functionals strongly deviate from ab initio MP2,
ACPF and CCSD(T) results [12]. All three functionals pre-
dict the first reaction to be exothermic, which is inconsistent
with the other results. Moreover, the pure functionals, VWN
and BP, yield results that can differ by as much as 30 kJ/mol.
This indicates that the present functionals cannot describe
the breaking and forming of strong bonds that involve a sig-
nificant rearrangement of the electron density at the actinide
center.

Privalov et al. [50] have investigated the reaction energy
for a number of gas phase reactions

2UO3(g) + UF6(g) → 3UO2F2(g), (13)

UO2F2(g) + 2H2O(g) → UO2(OH)2(g) + 2HF(g), (14)

UF6(g) + 2H2O(g) → UO2F2(g) + 4HF(g), (15)

UO3(g) + H2O(g) → UO2(OH)2(g), (16)

UF6(g) + 3H2O(g) → UO3(g) + 6HF(g). (17)

The correlation contribution was calculated using MP2,
CCSD(T) and B3LYP.

Reactions (13), (14), (15), (16) and (17) should provide
a sensitive test both on the basis set effect and the accuracy
of correlation methods, since the bonds in these complexes
are strong.

Schimmelpfennig et al. [51] extended this study to in-
clude the corresponding neptunium(VI) and plutonium(VI)
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Table 5 Reaction energies in kJ/mol for Reactions (10) and (11) (see text) computed with all-electron or ECP basis, with or without g functions
on the actinide center

Level All-electron RECP Ref.
No g With g No g With g

UO2+
2 +1/2 H2O → HOUO2+ +1/4O2

HF −29.5 −21.03 −34.56a −22.60b [12]
ACPF 41.48 40.68 42.40 44.45 [12]
MP2 – 57.32 46.80 51.29 [12]
CCSD(T) – 47.60 – 49.78 [12]
B3LYP – – – −39.37 [12]
VWN −66.9 – – – [75]
BP −39.7 – – – [75]

HOUO2+ +1/2 H2O → U(OH)2+
2 +1/4O2

HF −138.98 −117.11 −144.16c −118.66d [12]
ACPF 8.09 23.72 11.44 23.34 [12]
MP2 – 2.39 4.53 18.10 [12]
B3LYP – – – −0.84 [12]
VWN 48.9 – – – [75]
BP 30.5 – – – [75]

Values taken from Ref. [12]
a Old value −34.56
b Old value −28.91
c Old value: −129.30
d Old value −91.47

Table 6 Reaction energies for the gas phase reactions (13), (14), (15), (16), (17), and (18) in kJ/mol, calculated with all-electron (AE) or RECP
basis sets. ANO-L denotes the large ANO basis sets given in the Molcas package (see below)

Reaction 2UO3 + UF6 → 3UO2F2 UO2F2 + 2H2O → UF6 + 2H2O → UO3 + H2O → UF6 + 3H2O →
UO2(OH)2 + 2HF UO2F2 + 4HF UO2(OH)2 UO3 + 6HF

MP2/ECP without g −278 (54) 101 (14) 232 (14) −154 (34) 487 (−5)
MP2/ECP with g −288 (44) 105 (18) 200 (−18) −139 (49) 443 (−49)
MP2/AE with g −306 (26) 86 (−1) 168 (−50) −151 (37) 405 (−87)
CCSD(T)/ECP without g −329 (3) 110 (23) 263 (45) −186 (2) 558 (66)
CCSD(T)/ECP with g −329 (3) 113 (26) 241 (23) −172 (16) 526 (34)
B3LYP/ECP without g −262 (70) 130 (43) 332 (114) −166 (22) 627 (135)
CCSD(T)/ECP ANO-L basis −332 87 218 −188 492

Values in parenthesis are the deviations from the CCSD(T) ANO-L results. Values taken from Refs. [50, 51]

reactions, for which experimental data are not available. They
investigated both the accuracy of the correlation methods
and of the small core ECPs, and noted that the g functions
at the correlated level are important in these reactions. The
medium sized basis sets used in most of the reported cal-
culations give acceptable results, which still differ by about
20 kJ/mol different from those obtained with the large basis
set CCSD(T) (Table 6).

The uncertainty connected with the different correlation
methods is moderate to large. The MP2 results differ from
the large CCSD(T) calculation by up to 50 kJ/mol. Reactions
(14), (15) and (17) involve the formation of HF, which is
difficult to describe with any correlation method. Privalov
et al. [50] suggested a normalization procedure to minimize
the systematic errors in the calculation. They used a con-
stant difference between the calculated and measured reac-
tion energies for reaction (13) and applied this to the other
reactions and thereby obtained a dramatic improvement in
the results compared to experiment.

A surprising feature noted by Schimmelpfennig et al. [51]
is the difference between the MP2 results calculated at the
ECP and the all-electron levels, which is about 10–20 kJ/mol
for reactions (13), (14) and (16), and 32 and 38 kJ/mol for
reactions (15) and (17). The reason is presumably the errors
induced by the nodeless character of the orbitals in the ECP
calculations. The B3LYP results deviate even more from the
large basis CCSD(T) results, in particular for reactions (15)
and (17).

In the systems studied by Vallet et al. [12], Privalov et al.
[50] and Schimmelpfennig et al. [51] it is clearly important
to include g functions in the basis set already at the HF level,
and also to properly select the correlation method. Schim-
melpfennig et al. [51] estimate that the uncertainty in the
MP2 reaction energies is about 50 kJ/mol.

The reactions studied by Vallet et al. [12] involved both
bond breaking and a change in oxidation state, while the
studies by Privalov et al. [50] and Schimmelpfennig et al.
[51] concerned compounds with strong bonds. As will be
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Table 7 Reaction energies in kJ/mol for the D and A water exchange pathways in [UO2(H2O)5]2+ [Eqs. (18) and (19) of the text]. Geometries
are optimized at the HF or MP2 level with O and H basis sets indicated in brackets (O basis/H basis)

Basis seta Method for geometry optimization Method for single-point calculation D-intermediate A-intermediate Ref

6-31++G**/6-31++G** B3LYP-GP B3LYP-GP −1.7 101.4 [76]
B3LYP-PCM 20.5 98.5

ECPTLS/DZP B3LYP B3LYP-GP 44.8 – [77]
ECP2MWB/huzi HF-GP HF-GP 37.4 – [60]

MP2-GP 42.9 –
MP2-CPCM 65.8 –

ECP2MWB/huzi HF-CPCM HF-CPCM 53.7 20.8 [60]
MP2-CPCM 61.8 15.8

ECP2MWB/huzi MP2-GP HF-GP 41.0 (40.5) 45.8 (46.3) This work
HF-CPCM 44.3 (43.8) 32.7 (33.1)

MP2-GP 38.2 (35.4) 34.0 (35.7)
MP2-CPCM 52.9 (51.8) 15.3 (16.7)

TZVP/TZVP MP2-GP HF-GP 38.6 (38.8) 47.9 (49.4) This work
HF-CPCM 54.5 (55.0) 33.1 (34.7)

MP2-GP 33.8 (32.5) 32.4 (37.3)
MP2-CPCM 52.9 (52.0) 11.9 (16.9)

Energies are calculated at the HF level or MP2 level in the GP or in the CPCM solvent model. Values in parenthesis were computed by including
two g functions given in Ref. [12]
a O basis / H basis. Oxygen 6-31++G**, ECP2TLS, ECP2MWB, and TZVP basis sets are taken from Refs. [78], [79], [55], and [56], respectively.
Hydrogen DZP, Huzi (Huzinaga), and TZVP basis sets are taken from Refs. [80], [57] and [58], respectively

seen later in this review, reactions that involve formation
and breaking of weakly bound ligands in complex forma-
tion or ligand exchange / ligand substitution at actinides are
much less sensitive to the choice of basis set and correlation
methods.

A major problem with quantum chemical studies of acti-
nide complexes is that the number of electrons is too large
for standard CI methods such as multi-reference SDCI to
be applicable (due to the size consistency problem) and that
multi-reference effects in complexes with two or more
occupied f-orbitals precludes the use of size consistent single
reference methods such as CCSD(T). DFT is also a single ref-
erence method and furthermore it gives unsatisfactory results
on strongly bound complexes. The only generally applicable
method for these systems is thus MP2, but it is important to
realize its shortcomings and compare the calculated results
with experiments whenever possible. It is also of advantage
if sequences of similar systems can be compared, since this
minimizes the effects of systematic errors. Another possibil-
ity, used by several authors, is to calibrate the calculations to
some known experimental result.

The situation is different for complex formation reactions
taking place in gas phase and solvent; we will demonstrate
this by comparing the energy for the reactions (18) and (19)
given in Table 7, both in gas phase, at the HF and MP2 lev-
els. The MP2 calculations have been made using either the
gas-phase HF geometry with a single point MP2 on top or a
complete MP2 with the MP2 optimized geometry.

[UO2(OH2)
2+
5 ], (H2O) → [UO2(OH2)

2+
4 ], (H2O)2 (18)

and

[UO2(OH2)
2+
5 ], (H2O) → [UO2(OH2)

2+
6 ]. (19)

The choice of basis set for the O and H atoms has a
small influence on the calculated reaction energies, at most

4 kJ/mol. The same is true when adding a g-function to the
U-basis set, cf. Table 7. The reaction energy for the disso-
ciative reaction (18) changes very little between the different
theoretical models; it is not possible to make the same com-
parison for the associative reaction (19) as UO2(OH2)

2+
6 is

not a stable species if the geometry optimization is made at
the HF-level. In the gas-phase, the difference between the
reaction energies for (18) and (19) is only 4.2 kJ/mol. The
data in Table 7 also show that the reaction energy between the
isomers is not strongly dependent on the difference between
the HF and MP2 geometry; the difference 13 kJ/mol, is small
but not negligible. This indicates that one should use MP2
optimized geometries whenever possible, especially when
comparing reactions with small energy differences.

Tsushima et al. [76] have studied UO2+
2 coordinated by

four, five and six water molecules in the gas phase and solu-
tion, using B3LYP, large core ECPs, and the PCM model,
imposing symmetry constraints. There are a number of sig-
nificant discrepancies between our results, theirs and other
MP2 [81] or B3LYP data [77]. One reason might be the sym-
metry constraints, another that they used a large core ECP;
as discussed earlier by us and noted by Clavaguéra-Sarrio et
al. [81], it is important to keep a small core.

It is at this point pertinent to return to the question of
the accuracy of the MP2 method for actinide complexes.
In a recent review article, Rotzinger [82] has discussed the
accuracy of geometry optimization at different levels of com-
putation; we agree with his statement that “The computa-
tionally fast HF calculations yield reasonable geometries”
but not his subsequent statement that “geometry optimiza-
tion at the HF and energy computations with MP2 are inade-
quate (for uranyl(VI) systems, our addition)”; his claim is not
supported by the comparison of experimental and computed
bond distances in Tables 3 and 4. In the same review arti-
cle Rotzinger also made the following statements concerning
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static correlation and the accuracy of the MP2 method in acti-
nide(VI) complexes “In UO2(OH2)

2+
5 , there is static elec-

tron correlation, arising from the population of σ ∗ (M=O)
and π∗(M=O) MOs by σ (M=O) and π(M=O) electrons as in
VO(OH2)

2+
5 .” In the quoted reference (ref 10 in the Rotzin-

ger paper [82]) there is no computation to support this state-
ment, despite the fact that he correctly points out, “From
the population of the natural orbitals (NOs), it can be seen
if static correlation is present.” Both results from previous
studies [12, 49] and more recent results indicate that there is
no static correlation of the near-degeneracy type in UO2+

2 ;
as stated in Sect. 4.1 the coefficient of the leading configu-
ration is 0.93 and there is no other dominant configuration.
The largest occupation among the antibonding natural orbi-
tals is 0.06, and the largest coefficient (except that for the
leading configuration) is 0.08, which shows that while va-
lence correlation is important it is not of the conventional
near-degeneracy type, which would cause problems in an
MP2 calculation. The wave function at the MP2 level is well
behaved, and there is no reason to suspect any significant
error in the energy due to near degeneracy effects. This is
confirmed by the results obtained for the reduction of uranyl,
which is a complicated reaction involving both bond break-
ing and electron transfer, where the agreement between the
MP2 and the CCSD(T) results are within 20 kJ/mol, and the
gas phase reactions (13), (14), (15), (16) and (17), where the
agreement between CCSD(T) and MP2 is within 50 kJ/mol,
which is satisfactory considering the number of compounds
involved in the reactions. Our conclusion, in contrast to the
statements of Rotzinger, is that perturbation methods such as
MP2 are in general applicable to uranyl(VI) complexes, and
in particular to describe reactions involving labile ligands.
For other actinide complexes with two or more unpaired 5f-
electrons multi-reference effects may become large due to
atomic coupling effects, and in these cases a minimal CAS-
PT2 with a few configurations in the reference state is appro-
priate as shown in several previous studies [11, 12, 50, 51,
62].

Conclusions The solvent effect of the electronic energy can
be obtained either using the gas phase geometry and adding
a single point PCM calculation, or by making the geometry
optimization in the solvent. For actinide systems of even mod-
erate size, the latter method can only be used at the HF level.
We are therefore left with the following choices to compute
reaction energies:

– To use gas-phase geometries at the HF level and add a
single point MP2 and a single point PCM on top.

– To use a HF geometry optimized in the PCM and add a
single point MP2 on top

– To use a gas-phase MP2 geometry and add a single point
PCM on top.

The choice of method depends on the type of the chem-
ical process involved, the accuracy required for the prob-
lem at hand, the available software and the computation cost.
Recently, new software has become available that allow fast

geometry optimization at the MP2 level for actinides and
these should therefore be preferred.

A comparison between the MP2 and HF methods for en-
ergy calculations is of interest (the effect on geometry is dis-
cussed in Sect. 4). As seen in Table 7, the energy differ-
ence between the precursor [UO2(OH2)

2+
5 ], ( H2O) and the

intermediate [UO2(OH2)
2+
4 ], ( H2O)2 between the different

optimized geometries is small, 12 kJ/mol between the gas
phase HF geometry and the gas phase MP2 geometry and
8 kJ/mol between the solvent optimized HF geometry and
the gas phase MP2 geometry; for the A-intermediate, the
difference is only 0.5 kJ/mol. Our conclusion, in contrast to
the opinion of Rotzinger, is that even the gas phase opti-
mized geometry at the HF level provides a good estimate of
reaction (and activation) energies for ligand exchange reac-
tions. It should also be pointed out that the approximations
inherent in all QM methods make it questionable to discuss
energy differences between complexes that are smaller than
5–10 kJ/mol.

5.2 Spin-orbit effects on energetics

Formally, spin-orbit interaction contributes to decrease the
energy of open-shell molecules. If the number and character
of open-shell orbitals are the same for the reactant and the
product, spin-orbit effects essentially compensate one an-
other. This will be the case in ligand-exchange/substitution
reactions for the early actinide ions. We have checked this
assumption by calculating the spin-orbit effect on the reac-
tion energy for the D and A-pathways, Eqs. (18) and (19)
for the water exchange in NpO2(OH2)

2+
5 studied by Vallet et

al. [82]. The lowering of the electronic energy by spin-orbit
coupling of the five-coordinated precursor, the dissociative
intermediate and associative intermediate is 32.1, 31.1 and
32.9 kJ/mol, respectively. This implies that the effect on the
relative energies of the precursor and successors is small, less
than 1 kJ/mol and can therefore be neglected. As noted earlier
in this paper, the situation is very different for reactions that
involve a significant rearrangement of the electron density at
or close to the actinide center. Redox and electron-transfer
reactions belong to this class.

Vallet et al. [12, 74] used the variation-perturbation method
to describe the spin-orbit effect in reaction (12)

UO2+
2 + H2O → U(OH)2+

2 + 1/2O2. (20)

The effect of spin-orbit coupling is larger for the products
than for the reactants, leading to a lowering of the reactions
energy from 67.7 kJ/mol at the spin-free level to 11.7 kJ/mol
when spin-orbit was taken into account [12]. Hay et al. [67]
have investigated AnO2(H2O)2+

5 and AnO2(H2O)+5 for the
An = U, Np and Pu at the gas-phase DFT/B3LYP level. They
estimated spin-orbit effects using a semi-empirical spin-orbit
operator and coupling all determinants arising from the f N

multiplet. The trend of the reduction potentials along the se-
ries of early actinides was correct; however, the neglect of
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Table 8 Comparison between the RASSI-SO (variation-perturbation) and EPCISO results on the NpVI (OH)2 and NpV (OH)2 complexes in the
precursor state geometry (cf. Ref. [84])

Code Fragment States for which the orbitals are optimized SO lowering of the GS (kJ/mol)

RASSI-SO Np(V)(OH)−2 GS + excited states 79.5
EPCISO (no singles) Np(V)(OH)−2 GS 71.5
EPCISO (with singles) Np(V)(OH)−2 GS 82.3
EPCISO (no singles) Np(V)(OH)−2 GS + excited states 79.9
EPCISO (with singles) Np(V)(OH)−2 GS + excited states 81.0
RASSI-SO Np(VI)(OH)2 GS + excited states 33.3
EPCISO (no singles) Np(VI)(OH)2 GS 18.0
EPCISO (with singles) Np(VI)(OH)2 GS 32.0
EPCISO (no singles) Np(VI)(OH)2 GS + excited states 33.3
EPCISO (with singles) Np(VI)(OH)2 GS + excited states 35.0

Values taken from Ref. [85]

outer-sphere solvation effects results in reduction potentials
that are overestimated by as much as 2–3 V.

Outer- and inner-sphere electron self-exchange reactions
such as

MO2+
2 + M∗O+

2 � M∗O2+
2 + MO+

2 (21)

were studied by Privalov et al. [84] and Macak et al. [45]
in order to determine rate constants and activation energies,
in this case the reactants and products are the same, there-
fore �G◦ = 0. However, it is important to include spin-orbit
effects when there are open f-shells in the complexes. The
spin-orbit effect was calculated using both the variation-per-
turbation method in the RASSI-SO module [3] of Molcas 5
[4] where the basis for the spin-orbit calculations was gener-
ated from multistate RASSCF calculations with equal weight
on all configurations, and the spin-orbit CI method EPC-
ISO [5] where the CI space includes all f configurations plus
singly-excited configurations strongly coupled to the latter.
Since spin-orbit effects are localized on the actinide centers,
one can divide the full complex into fragments, each contain-
ing a single actinyl unit and the bridge. Fromager et al. [85]
tested the accuracy of this procedure on the inner-sphere com-
plexes with hydroxide and fluoride bridges [Eqs. (4), (5) and
(6)] at the variation-perturbation level. The fragment method
is quite accurate but the total spin-orbit effect is underesti-
mated by about 2 kJ/mol, as compared to the calculation on
the full complex.

Fromager et al. [85] also addressed the questions of the
importance of jj coupling, and spin-orbit relaxation (different
spatial extensions of the spinors in a multiplet) in neptu-
nyl(VI) and neptunyl(V). It is generally assumed that spin-
orbit relaxation effects are small in the actinides, and Fromager
et al. [85] investigated the validity of this assumption. They
used two different methods to calculate the spin-orbit effect; a
variation-perturbation method based on an LS coupled basis
set consisting of the 5f-manifold, and a multireference single
excitation spin-orbit CI using the 5f manifold as the reference.
The spin-orbit CI is also based on the LS coupling scheme
but in this case both the spin-orbit and the scalar relaxa-
tion effects are properly accounted for by the interaction
with the singly excited states. The results are summarized in
Table 8.

Two conclusions can be drawn from these results. First,
the close agreement between the single excitation spin-orbit
CI using ground-state and state-averaged orbitals shows that
the spin-orbit CI is capable of reproducing the scalar (elec-
trostatic) relaxation effects in the excited reference states
with high accuracy. Second, the close agreement between
the single excitation spin-orbit CI and the variation-perturba-
tion results (obtained with state-averaged orbitals) shows that
spin-orbit relaxation effects are small. This indicates that jj-
coupling effects are small for actinides, and presumably also
for other transition elements, with open shells with high l-val-
ues [86]. Finally, it is important to underline that the spin-orbit
CI method has some practical advantages compared to the
variation-perturbation method because there is no need to use
state-averaged orbitals, which are often difficult to obtain.

6 Thermodynamics of chemical reactions

Quantum chemistry offers the possibility to discuss the micro-
scopic basis for chemical thermodynamics, that is to interpret
macroscopic events in molecular terms. The link is provided
by statistical thermodynamics through the molecular parti-
tion functions. This requires accurate information on the total
electronic energy, and the vibration / rotation energy levels
for reactants and products. The accuracy of the entropy cal-
culations depends on the accuracy of the vibration energy
levels. Analytical vibration frequencies are usually available
only in gas phase and in general agree well with experimental
values, cf. Privalov et al. [50]; the rotation frequencies in gas
phase are calculated from the moments of inertia obtained
in the geometry optimization. In “structured” solvents like
water, free rotation is severely restricted and it seems rea-
sonable to neglect rotation contributions. The contribution of
translation and even its definition is less clear in a solvent
[48].

A comparison of QM calculations of the vibration energy
levels for small actinide molecules in gas phase indicate that
the frequencies are not strongly dependent on the QM method
used as discussed in Ref. [51]. Low-frequency modes make
the largest contributions to the molecular partition functions,
e.g. those describing hydrogen bond interactions between
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solute and solvent. It seems unlikely that ab initio methods
will be able to describe these accurately and to calculate accu-
rate entropies for solutes in aqueous solution. However, the
situation might well be different for entropies of reaction,
provided that the systematic errors in the frequency calcula-
tion and the effect of the solvent compensate one another in
the product and reactant. The only way to ascertain if this is
the case or not, is to make comparisons with experimental
data; Vallet et al. [48] have given examples that indicate that
some compensation does indeed take place.

The electronic energy of reaction and the contribution
from solvation are much smaller than the total energy of reac-
tants and products, and it is necessary for systematic errors
to balance in order to have reliable values for chemical reac-
tions. In this section we shall discuss how this can be achieved
and also the effect of different approximations on the ther-
modynamics of chemical reactions exemplified by

aA +bB → cC +dD, (22)

where charges have been omitted for simplicity. The reac-
tants and products in complex formation reactions are often
charged species. In order to have reasonably accurate val-
ues for the thermodynamics of reaction (22) in solution it is
necessary that the systematic errors compensate one another.
As discussed in Sect. 3.3, this is difficult to achieve if we
treat each reactant and product separately; ions with differ-
ent charge and different size will have widely different sol-
vation energies. Even if the systematic error in the solvation
energy for the reaction is most likely smaller than the accu-
mulated error in each reactant and product, it still results in
estimated thermodynamic quantities that differ widely from
experimental data. Complex formation reactions involve the
replacement of a ligand, usually water, in the first coordina-
tion sphere with a “free” ligand. A better approach to cal-
culate the thermodynamics of the reaction is then to divide
reaction (22) into two parts, as shown in Eqs. (8) and (9)
where the first part is the formation of an outer-sphere com-
plex that can be described using the Fuoss equation [46, 47]
and the second an intramolecular reaction that is described
using QM, as discussed in Sect. 3.3. In the calculation of
the Gibbs energy of reactions for reaction (8) and (9), Vallet
et al. [48] used gas phase vibration frequencies to calculate
the entropies for reactants and products and the enthalpy of
reaction. It is of interest to note that the calculated entropy
and enthalpy of reaction for the two-step model are also in
better agreement with the experimental observations than the
calculation based on Eq. (7). The method outlined by Vallet
et al. has limitations as discussed in Sect. 4.2, a second exam-
ple is shown in Fig. 2, where the outer sphere oxalate ligand
abstracts proton from coordinated water.

It is well known that there are large similarities in the
chemistry of the actinides if they are in the same oxidation
state. One can then use experimental data for one actinide,
e.g. thorium or uranium to calibrate QM calculations and
in this way obtain information on the variation of chemical
properties throughout the actinide series. This has important
practical implications because it makes it possible to estimate

Fig. 2 Perspective view of the structure of [UO2(H2O)2+
5 ] (oxalate)2−

that shows double proton abstraction from the oxalate group. The geom-
etries have been optimized at the HF level in gas-phase. The dashed line
indicates hydrogen bond interactions. Bond distances are in Å ngström

thermodynamic data for elements that are highly toxic and
difficult and expensive to study experimentally.

7 Conclusions

In this article we have presented a critical discussion of pub-
lished computational studies of actinides chemistry in gas
phase and in solution. The most important criteria to bench-
mark theoretical methods is the extent to which systematic er-
rors affect the computed physico-chemical quantities such as
electronic energy, structures, energy levels and solvation. The
systematic errors in chemical reactions depend critically on
cancellation of systematic errors between reactants and prod-
ucts and this is strongly influenced by the chemical model
used to describe the “real” systems. In complex formation
and ligand-substitution reactions in actinyl complexes, where
weak labile bonds are broken / formed, strong correlation ef-
fects are localized in the axial “actinyl” triple bonds. Since
the axial oxygen atoms do not participate in the ligand ex-
change process, errors in the energy of reaction and activation
energies, induced by the choice of basis set, correlation ef-
fects, spin-orbit contributions, essentially compensate each
other along the reaction path. However, whenever afford-
able, the geometry optimization should be made at the MP2
level in order to achieve better comparison with experimen-
tal structure data. Previous studies and the discussion in this
review demonstrate that static correlation of the near degen-
eracy type is not important in actinyl complexes and that the
MP2 method is therefore well suited to describe correlation;
these results refute the claims in Ref. [82]. Single point MP2
energies, based on both HF and MP2 optimized geometries
give very similar reaction energies. Redox and electron-trans-
fer reactions imply significant rearrangement of the electron
density at or close to the actinide centre. This makes it nec-
essary to describe electron correlation by using more elab-
orated post-HF methods (CCSD(T), MRCI, CASPT2) than
that used for complex formation / ligand-exchange reactions.
Here, most density functionals presently fail because of the
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wrong behavior at long-distance, which bias the description
of charge-transfer and redox reactions.

Solute–solvent interactions have a profound influence on
the relative stability of different isomers and on the energet-
ics of chemical reactions. At present most studies have been
made using continuum models, but there are some studies
made using combined QM/MM methods. In the examples
available the two approaches give similar results. However,
both methodological improvements and benchmarks have to
be considered in the future.

Li and Fu (Ref [87] and references therein) have sug-
gested that a factor of 0.5 is missing in front of the right hand
side of Eq. (3); however, this is of little consequence in the
applications discussed in the present review.
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